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Abstract— We analyze the large-amplitude resonance features, which are present at low frequencies
in the backscattering cross-sections (BSCS) of air-filled. spherical, elastic shells submerged in water.
By means of partial-wave expansions we demonstrate the multipole character of those featuees. For
the materials and thicknesses investigated, it is confirmied that about half-a-dozen modes contribute
to their formation. As the shell thickness decreases we note that: (i) fewer modes are seen to
contribute to the BSCS. Ultimately, as the shell thickness approaches zero, only the monopole,
n =0, mode has an effect, just as for an air-bubble in water. (i) In the bubble case, the large
amplitude becomes gignt, the various peaks coalesee into one, and its spectral location shifts down
to kya ~ 1072 (i) The narrow, low-amplitude set of overtones caused by the internal air remains
present at all thicknesses, as the shell thickness decreases. Finally, we give a physical interpretation
for these farge features, They seem to be caused by a pscudo-Lamb wave denoted here by af,
investigated carlier by Junger (1967), by means of Donnell's shell theory. This wave is slower than
the generalized zeroth-order antisymmetric a,,, Lamb wave for a shell. Its dispersion plot —which
we display —exists only in the same narrow, low-frequency spectral band where the large echo
featares in question also occur. We investigate here its cause and effect by means of an exact. three-
dimensional elasticity description of the shell motions, which was derived carlier by Ayres et al.
(1987). We emphasize that what we have called, here and in the referenced paper, the a,-wave, is
really a “generalized™ antisymmetric zeroth-order Lamb wave for a shell, fluid-loaded on both sides
by dissimilar fluids (and not for a plate in vacuum, as is often done). The al-wave is a companion
type of generalized a,-wirve for shells that emerges from the roots of the sume characteristic equation,
and which has no counterpart for flat plates.

I. INTRODUCTION

Perhaps the most noticeable and dominant of all features present in the backscattered echo
from an air-filled, spherical clastic shell in water, at low frequencies, is a large resonance
that appears in the Rayleigh region (viz. ¢/4 < 1, a being the outer radius of the shell and
/ the wavelength in water). For a metal shell in water, the pressure amplitude of this echo
featureis = 10 dB above the background it is superimposed on. Analyzing the low-frequency
responsce of shells as manifested in the echoes they return to a distant sensor, it is clear that
this feature is so prominent that it will be the first one detected. and the casiest to use as a
target-classifier by an active sonar operating at low [requencies. At first sight, this feature
appears to be a single spike, like in an air-bubble in water, but closer inspection shows that
it is composed of several peaks. They seem to be caused by several multipole components.
We wili show below that this is indeed the case. We study this feature using our earlier
approach (Ayres et al., 1987 ; Gaunaurd and Werby, 1987) in which the shell vibration was
analyzed by means of the exact equations of three-dimensional elasticity. We compare our
results with those obtained with an earlier approach based on shell theory. We give a
physical interpretation for its origin, and display the dispersion curve of the a}-wave that
causes it. This is a relatively slow wave due to shell curvature that only exists in a narrow
frequency band at the low end of the BSCS.
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122 H. C. StriFors and G. C. GAUNAURD
2. THEORETICAL BACKGROUND

A thin, air-filled, spherical elastic shell submerged in water has outer radius ¢ and inner
radius A. It is insonified at its South pole (defined by the spherical coordinate # = z) by a
plane sound wave that emerges from a disant source. Its normalized backscattering cross-
section o is given by (cf., i.e. Ayres et al., 1987):
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where f, (. x) is the form-function in the backscattering direction 6 = n. Here x = k,a.
where &, = w/c, is the wave number. The circular frequency is @ and ¢, is the sound speed
in the outer medium (i.e. medium No. [, the water). The shell is medium No. 2, and the
inner air is medium No. 3.

For each value of n the coeflicients A4,(x) are determined from the six boundary
conditions at the interfaces r = a. b (viz. continuity of radial displacement and normal
stress, and vanishing shear stress) as ratios of two 6 x 6 determinants:
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where the 30 non-vanishing ciements «, and AY, A% have been listed in Ayres ef al. (1987).
It should be noted that the shell deformations are governed by the three-dimensional theory
of clasticity, and no approximate shell theory has been introduced.

The elements of the determinants in eqn (2) all depend on x, vy = w/cys, X = wfc,y,
and vy, = w/ey, where ¢ (¢,3) is the dilatational (shear) wave speed in the shell, and ¢y is
the sound speed in the inner air. Since these quantitics can be expressed in terms of x, we
indicate this dependence by A,(x). We note that eqns (1) and (2) for the backscattering
cross-section and the modulus of the form-function (viz. |/, (%, x)|) obtained for elastic
materials can be conveniently generalized to viscoclastic materials using the methodology
described by Strifors and Gaunaurd (1989). For viscoelastic materials complex-valued wave
numbers replace the real-valued ones for elastic materials.

The modulus of the form-function has been plotted versus v in very broad frequency
bands by Ayres et al. (1987) and Gaunaurd and Werby (1987). The partial waves | £, (z, x)],
for n =0.1,2,..., defined in eqn (1) arc the “normal modes™ that make up the form-
function, | f, (7, x)|. In the very broad bands in which the form-functions have been pre-
viously displayed in the referenced papers, the low-frequency behavior is not clearly dis-
cernible, and it has received relatively little attention,

3. THE LOW-FREQUENCY BEHAVIOR CENTRE

Submerged spherical shells insonified at very low frequencies, have form-functions that
exhibit noticeable resonance features in the (non-dimensional) frequency band: 0 < x < 4.
These features are of relatively large amplitudes and, at first sight, resemble the so-called
giant monopole resonance (Gaunaurd et al., 1979) of air-bubbles in water. Since most of
the past attention has been directed to the overall broadband spectral behavior, particularly
at high frequencics, this large resonance has not yet received much study. Furthermore, in
many earlier calculations pertaining to the cross-sections of elastic shells in water, the shells
have been assumed evacuated. This assumption does not introduce significant errors in the
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Table 1. Material properties of interest

Material plkgm™Y) cfey (ms™) ¢, (ms ")
Steel 7800 5880 3140
Water 1000 1500 e
Air 1.20 340 -

overall behavior. but as we will see below, it results in the neglect of certain narrow
resonance families that are precisely due to the presence of internal air.

We will study all the resonance features in the above mentioned frequency band, and
will exhibit the real multipole nature of the large features. as well as confirm the presence
of the narrow resonance families caused by inner air. Moreover, we will see that as the shell
thickness is decreased the large resonances approach the monopole resonance of air-bubbles
in water. This means that: (i) the multipole character progressively disappears, (i1} the
amplitude becomes “giant™, and (iii) the single mode that eventually is seen to cause it
(i.e. the mode n = 0) produces a single resonance frequency that shifts to lower values.
Furthermore, the narrow resonance families due to the inner air remain present and visible
throughout the entire limiting process b — qa, as shown below.

We note that in the very thin-shell imit, » — a. the shell matenial actually disappears.
Medium No. 2 is absent, and only media No. | and No. 3 remain. The coefficients in eqn
{2) then reduce. after considerable algebra, to:
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where 7,(+) and 25" (+) denote the spherical Bessel function of the first kind of order # and
the spherical Hankel function of the first kind of order n, respectively, and a prime denotes
derivation with respect to the argument. Equation (3) is the exact expression of the cocetlic-
ients for an air-bubble in water, of, Gaunaurd er @l. (1979). Sce also the recent review by
Brill and Guunaurd (1987), where this and various other limiting cases have been investi-
gated. The right side of egn (3) can be expressed exclusively in terms of x, since
Xy = {efey) x and ¢y, ¢y are presumably known, as well as p,, p;. In the air-bubble case
just mentioned, as well as in the limiting process for the progressively thinner metal
shell of interest here, the RST (Resonance Scattering Theory) “background™ (Brill and
Gaunaurd, 1987) thut must be suppressed to isolate the resulting resonances is the soff one,
obtained from eqn (3) in the limit of a very tenuous (i.e. ultimately, evacuated) bubble of
density py/p, — +0. In this limit, the pertinent coeflicients A,(x) to be used in eqn (1)
reduce to:

A, (x) = = (/B (). 4)

4. NUMERICAL RESULTS AND DISCUSSION

The air-filled, steel shell in water and the acoustic media considered here have material
propertics of primary interest for wave propagation listed in Table I. The wave speeds for
steel have been computed using the values £ = 200 GPa and v = 0.3 of Young's modulus
and Poisson's ratio. respectively. The pertinent form-functions for this shell, of relative
thicknesses: hja = | —hjfa = 2.5%, 1.0%, 0.1% and 0.01% are shown in Fig. 1, in the
dimensionless frequency band: 0 € x = k,a £ 4. In the upper plots we sec that there are
some large-amplitude resonance features occurring at frequencies between one and two-
and-a-half, These amplitude peaks get to be as large as nine-and-a-half. In the lower plots,
where the shell thicknesses are very small, we note that the multipole resonances have been
replaced by a single one. which shifts down to smaller values of the frequency when the
shell thickness is decreased. We also observe that the amplitude of the monopole resonance
increases with decreasing shell thickness.
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Fig. |. Modulus of the form-function of an air-filled steel shell in water in the frequency range

0 < ka < 4. Relative shell thickness Afa = 2.5%, 1.0%., 0.1% and 0.01%.

In cach plot in Fig. | there is also a low-amplitude narrow sct of resonances that trails
behind, and is superimposed on the “soft™ background obtained by the cocflicients in eqn
(4). These narrow resonances are due to the inner air.

Next we examine the partial-waves | £, (. x)| contained within the form-function (cf.
eqn (1)). The first six of these normal modes (i.e. n = 0,1,...,5) are plotted in Figs 2 and
3. Obscrvation of Fig. 2 shows that cach of the partial waves n=2,...,5 contains a
dominating resonance spike coincident with each of the main peaks present in the respective
upper plot of Fig. 1. Thus, each of the resonance features in the form-function has its origin
in each of the partial waves representing the modes, beginning with # = 2. It is not necessary
to display partial-waves in Fig. 2 past n = 5 because the contribution to the presence of the
resulting large feature for this material and thicknesses diminishes rapidly for larger values
of n.

In Fig. 3 the corresponding plots of partial waves for the shells with relative thickness
of only 0.1% and 0.01%. We sce that the multipole resonances of Fig. 2 have disappeared
while, instead, a monopole resonance (n = 0) emerges. In the limit of vanishing shell
thickness this monopolc resonance approaches the giant resonance of an air-bubble that
is displayed in Fig. 4. We have verified the limiting response numerically for a relative
shell thickness as low as 10~*. For the air-bubble in water the form-function is computed
using the coefficients in eqn (3). It shows a main peak at x = £,a4 = 0.0136 of magnitude
{ fo(m, x)| = 147. This peak can be decomposed into a background portion and a residual
or resonance portion in the usual manner of the RST as was shown by Gaunaurd e al.
(1979), using a slightly different definition of form-function that accounts for the difference
by a factor of two as compared with the value given here. The background is due to the
bubble wall and shape, and the “‘resonance” is due to the internal air. Below the value
x = 0.01 the curve exhibits a growth proportional to x? as predicted by the Rayleigh
fourth-power law for scattering cross-sections, which are proportional to the square of the
appropriate form-function. We note that the amplitude value 147 is about 22 dB above a
background level of unity. OQur exact bubble results agree well with approximate ones,
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Fig. 2. Thefirstfew (n =0, 1,..., 5) partial waves contained within the backscattering cross-scctions

summed in the upper plots in Fig. 1. Relative shell thickness is 2.5% (1.0%) in the left (right) plots.

found in the early forties, which appeared in World War [1 Reports such as the much cited
compendium edited by Major (1969).

5. PHYSICAL INTERPRETATION OF THE LARGE AMPLITUDE FEATURES

The large amplitude resonance features of shell cross-sections at low frequencies seem
to be caused by a relatively slow shell wave that has a phase velocity lower than that of the
ag-wave (i.e. zeroth-order antisymmetric Lamb wave). We will denote this wave the
“aj-wave”. It is closely related to the a,-wave, since it emerges from an additional set of
roots of the same characteristic equation. We call it a “'shell wave™, as opposed to a plate
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Fig. 3. Thefisstfew (n = 0. 1, ..., 5) partial waves contained within the backscattering cross-sections
summed in the lower plots in Fig. [. Relative shell thickness is 0.1% (0.01%) in the left (right)
plots.

wave, because it can only be studied by a shell approach, whether exact (i.c. based on the
three-dimensional theory of clasticity) or approximate (i.e. based on a shell theory). The
6 x 6 denominator determinant D,(x) in eqn (2) has zeros that are the (complex) eigen-
frequencics of this fluid-loaded sound-excited shell. If the shell density p, is much larger
than the water density p, (i.€. p, » p,), and also much larger than the density of the filler
fluid p, (i.c. p; » p3). then the condition D, (x) = 0 reduces to the vanishing of four possible
4 x 4 minor determinants D, D3}, D!{ and D 3. The boundary conditions on r = a, 5 that
give rise to these determinants all imply that at least one shell surface is prevented from
moving in the radial direction. except the vanishing of D3!. For this exception both shell
surfaces are free from surface traction, and this is the condition required for the formation
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Fig. 4. The first partiad wave, | fo(r, )|, contained within the backscattering cross-section of an air-
bubble in water, which is the cause of the giant monopole resonance.

of proper Lamb waves. Theretore, the pertinent resonances of this shell in this frequency
band appear as the roots of a generalized eigenfrequency condition for Lamb modes in
submerged shells, obtained by Gaunaurd and Werby (1987). Ordinary lamb modes were
originally studied tor plates in ractum, and we are now dealing with shells fluid-toaded on
both surfaces with dissimilar fluids. The expanded version of that modified condition is

di, diy dy dys

Di(l, - ([\2 l,” ([_‘4 (135 - 0‘ (5)
diy dyy dyy dys

dyy dyy dys des

which only has real roots x,;, where n and { are the two indices required to label any root.

The familics of roots of this equation are the shell analogues of the resonances usually
associated with the symmetric (s,) and antisymmetric («,) Lamb modes in plates, originally
studied by Tolstoy and Usdin (1953, 1957). However, there are also additional roots of eqn
(5). These extra roots—us well as the other ones—can be used to construct the dispersion
plots for the phase velocities ¢f of the circumferential waves travelling around the shell by
meins of the relation (Gaunaurd, 1989 ; Gaunaurd er al., 1983):

f (¥) X
Py ©

where x,, denotes the roots of eqn (5) corresponding to the /th surface wave.

Dispersion plots for the phase velocitics, ¢f, belonging to the ay-branch in the frequency
band: 0 € x < 20 arc displayed in Fig. 5 for a steel shell of various thicknesses (viz.
hia = 1%, 2.5%. 5%....). The phase velocities assoctated with the so-waves are all greater
than 5 km s~ ', and thus, they fall outside the upper bounds of Fig. 5. However, in the
band: | € x £ 2.3, for a steel shell of relative thickness #/a = 1%, there appears another
branch of the dispersion curves also shown in the lower left corner of Fig. 5 for another
permissible set of roots of eqn (5). It may be proper to call this branch the (Junger)
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versus ko tor anair-filled spherical steel shell i water with relative shell thickness A/a = %%, 2,5%.
5%, 10" and 20%. For the relative shell thickness of 1% the a-branch is displayed.

“aj-branch™, It scems Lo exist only within a (narrow) low-frequency band, where curvature
cffects are marked. We note that in contrast to ordinary dispersion plots for the ag-branch,
as obtained from flut plute approaches (Tolstoy and Usdin, 1953, 1957 ; Ayres ¢t al., 1987),
the wg-branch(es) shown in Fig. 5, obtained from the exact three-dimensional theory of
clasticity contained in eqns (5) and (6) for fluid-loaded shells, exhibit values that grow —
instead of decrease to zero —-us v decreases. We further note that for subsonic phase
velocities (viz. ¢f) < ¢, this corresponds to frequencies below the “coincidence™ frequency),
the ag-branch is “turned-ofl™ ind thus, the corresponding curve is plotted in dashed lines
in that region of Fig. 5. In that (subsonic) low-frequency region where the ay Lamb wave
is still dormant, the s-wave (responsible for the sq-branch of the phase velocity—not shown
in Fig. 5) is “"on™ exerting its influence on the form-function, and so is the a)-wave.

As stated before, the aj-wave only exerts its influence in the band: | € x < 2.3 (for
hla = 1%), and that is precisely the band where the large resonance features of the form-
function are seen to oceur in Figs | and 2. Finally, for an air-bubble in water there is no
shell and no al-wave, but the dispersion curve that “corresponds™ to the a,-branch was
studied earlier by Gaunaurd et «f. (1983). In the high-frequency limit— which for a bubble
is reached almost immediately, for x = I—the phase velocitics of the interface waves
approach the value of the speed of sound in wir (Table 1, Fig. 5 and Fig. | in Junger, 1967).

6. CONCLUSIONS

We have studied. computed and displayed the large resonance features that are present
at low frequencies in the form-functions of air-filled. spherical elastic shells in water. From
the plots and the discussion it is obvious that these large features have a mudtipole character
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and. for the thicknesses and materials shown, are caused by the superposition of the
fundamental peaks of about half-a-dozen modes. As the shell thickness is made smaller
(down to extremely and impractically small values) we note that : (i) fewer modes contribute
to their formation ; (it) ultimately. as b — a, only one mode (viz. the monopole mode, n = 0)
contributes to it. just as in the air-bubble case: (iii) in that case the monopole resonance
grows in amplitude from large to giant. and its spectral position shifts to lower values as
low as x x 0.0136: (iv) the narrow, low-amplitude, overtones due to the presence of the air
inside the shell remain present in the form-function and in the partial waves throughout
the entire limiting process. Finally we have given a physical interpretation for the cause of
this large resonance feature. It seems to be due to the additional zeros of eqn (5) that by
means of eqn (6) produce an additional branch of the dispersion curves for the submerged
shell. This branch is associated with a slow wave circumnavigating the shell at low frequen-
cies. This branch seems to be analogous to a branch found earlier by Junger (1967) using a
shell theory by Donnell (1933) to describe the shell motions. [For details of this theory. see
for example Junger and Feit (1986).] We denoted this branch by a)). For a spherical steel
shell of relative thickness fi'a = 1% this branch exists only for low frequencies (viz. for
1 € x € 2.3). This is where the large and very noticeable resonance features of submerged
shells actually appear. The slow wave with these values of its phase velocity is due to the
shell curvature, and would have never emerged from a flat plate model of Lamb waves,
whether in vacuum or tluid-loaded, as they have been studied before.,
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APPENDIX

Five of the 28 non-vanishing clements. d,,. listed in Ayres et al. (1987). Appendix. contain minor typographical
errors that we wish to correct here to set the record straight. The underlined letter in cach element is the typo:

dy = k.(l/l:,”'(kﬂ_l)‘
dyv = =3k hy o (kpb) + 200+ 1) k17 pa(kah).

2n(n+ D[k, :hj (k. 2h) —ju(k,2b)].

dyy
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dyy = 2k bj Ak, h)+ kLA =2nn— 1)+ 2} j. 0k, P,

doe = 2k Lbytk by + (Kb = 2ngn = 1) = 2]tk h).

It

v,(*) being the spherical Bessel tunction of the second kind of order n.

Furthermore, Fig. 2uin Ayres er ul. (1987) refers to the large resonance feature in the cross-section displayed
there. as the “monopole resonance”™. {n view of the arguments discussed here. we now realize the mudiipole
character of this feature.



