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Abstract- We analyzc the large-amplitude resonance features. which are present at low fre4uencies
in the backsc'lttering cross-Sl.'Ctions (OSCS) of air-filled. spherical. elastic shells submerged In water.
Ily means of p<lrtial-wave c~pansions we deml1nstrate the multipole ch<lracter I,f those features. For
the m'lteri<l\s <lnd thicknesses invcstigated. it is confirmed that alwul half-<l-doTen modes contrioute
to their formation. As the shell thickness decreases we nole Ihat: (i) fewer modes are seen to
contrihute to the RSCS. Ultimatcly. as the shell thickness approaches Tero. only the monopole.
" = II. mode has an etrect. just as for an air-ouhhle in waler. (ii) In Ihe ouoole case. the large
amplitude Ot.'CI'mes .</i<ml. the various peaks coalesce inlo I'ne. and its s[X'Ctral toc'ltion shifts down
II' k ,CI - III :. (iii) The narrow. low-amplilude set of overlones caused oy th,' internal air remains
prescnt 'II all thicknesscs. as the shell thickness de<:reascs. Finally. we give a physi<:al interpret;ltion
li,r these large features. They seem to oe caused oy a ps<:udo·Lamo \\,;I\e denoled here oy u:,.
investigaled earlier oy Junger (1%7), oy means of Donnell's shell theory. This wave is slower than
the generalized zeroth·order antisynllnclri<: u". LIIllO wave for ;1 shell. lis dISpersion plot -which
we display -e~ists only in the same narrow. low-rreqllelll:y spe<:lral oand where Ihe large echo
I'ealures in qllestion also oc<:ur. We invesligate here ils <:allse and elrect oy means of an e~act. three'
dimension;.1 clasti<:ity description of the shell n1<ltions, whi<:h was derived earlier by Ayres ('I ul.
(\91<7). We emphasize th;lt Wh;ll we have <:alled. here <lnd in Ihe referenced paper, the <I,,-wave. is
re;llIya "generalized" anlisymmelri<: zewlh-order LIIIIO wave for a shell. lluid-Ioaded on oOlh sides
oy dissimihtr lluids (and not for a plm(' in l'Uetl/ltll. as is often done). The a~-wave is a companion
type ofgeneralized all-wave for shells thai emerges I'wmthe roots ol'lhe same chara<:terislic el\uation,
and whi<:h has no counterpart for Ilat plales.

I. INTRODUCTION

Perhaps the most noticeable and dominant of all features present in the backscattered echo
from an air-filled. spherical elastic shell in water. at low frequencies, is u large resonunce
that appe,lrs in the R'lyleigh region (viz. ttj;_ < I. (/ being the outer radius of the shell and
;. the wavelength in water). For a metal shell in water. the pressure amplitude of this echo
feature is ~ IOdB above the buckground it is superimposed on. Analyzing the low-frequency
response of shells as manifested in the echoes they return to a distant sensor. it is clear that
this feuture is so prominent that it will be the !irst one detected. und the easiest to use as a
target-classifier by an active sonar operating at low frequencies. At first sight. this feature
appears to be a single spike. like in un air-bubble in water. but closer inspection shows that
it is composed of several peaks. They seem to be caused by several multipole components.
We will show below that this is indeed the case. We study this feature using our earlier
approach (Ayres et al., 1987; Gaunaurd and Werby. 1987) in which the shell vibration was
analyzed by means of the exact equations of three-dimensional elasticity. We compare our
results with those obtained with an eurlier approach based on shell theory. We give a
physical interpretation for its origin. and display the dispersion curve of the a~-wave that
causes it. This is a relatively slow wave due to shell curvature that only exists in a narrow
freq uency band at the low end of the BSCS.
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2. THEORETICAL BACKGROV:-.iD

A thin. air-filled. spherical elastic shell submerged in water has outer radius a and inner
radius h. It is insonified at its South pole (defined by the spherical coordinate f) = rr) by a
plane sound wave that emerges from a disant source. Its normalized backscattering cross­
section (j is given by (cf.. i.e. Ayres el al.. 1987):

where f,(rr.x) is the form-function in the backscattering direction () = rr. Here x == kla.
where k , = (I)/CI is the wave number. The circular frequency is (IJ and CI is the sound speed
in the outer medium (i.e. medium No. I. the water). The shell is medium No.2. and the
inner air is medium No.3.

For each value of n the coetl1cients An(.r) are determined from the six boundary
conditions at the interfaces r = a. h (viz. continuity of radial displacement and normal
stress. and vanishing shear stress) as ratios of two 6 x 6 determinants:

Af d l2 d l .l dl~ d l5 () dll dl: d ll dl~ d l < 0

A! d 22 d 21 d2~ d 25 0 d: 1 d 22 d: l d2~ d2< ()

0 d '2 d ll d q dl< () 0 d'2 d ll d q d'5 0
"/,,(x) == () d'12 d~\ dH d~5 d~" 0 d '2 d ll d.l~ d l < d. l "

(2)

0 d'2 d5\ d q d,< d,,, () d<2 d" d", d" d,,,

0 d'.2 d,,\ ih.1 d"5 0 () d"2 d", d".1 d,,< 0

where the 30 non-vanishing elements d'l and II f. II! have been listed in Ayres i'l al. (19H7).
1L should be noted that the shell deformations are governed by the three-dimensional theory
or elasticity. ,lIld no approximate shell theory h,IS been introduced.

The dements or the determinants in eqn (2) all depend on x. X"2 == wlc,,:. x,: == wjc,2'
and x] == wjc .. where c,,: (c,:) is the dilatational (shear) wave speed in the shell. and c, is
the sounu speed in the inner air. Since these quantities can be expresseu in terms of x. we
indicate this dependence by An(x). We note that eqns (I) and (2) for the backscattcring
cross-section anu the mouulus of the form-function (viz. If, (n. x) Il obtaineu for elastic
materials can be conveniently generalized to viscoelastic materials using the methouology
described by Strirors and Gaunauru (1989). For viscoelastic materials complex-valued wave
numbers replace the n:al-valued ones for elastic materials.

The modulus of the form-function has been plotted versus x in very broau frequency
bands by Ayres cl al. (1987) and Gaunauru and Werby (1987). The partial waves IJ:(rr. x) I.
for n = O. 1.2....• dclined in eqn (I) arc the "normal modes" that make up the form­
function. If," (rr. x)l. [n the very broad bands in which the form-functions have been pre­
viously uisplayed in the referenced papers. the low-frequency behavior is not dearly uis­
cernible. anu it has received relatively little attention .

." TilE LOW·FREQUENCY BEIIAVIOR CENTRE

Submerged spherical shells insonified at very low fn:quencies. have form·functions that
exhibit noticeable resonance features in the (non-dimensional) frequency b,lnd : 0 < x < 4.
These features arc of relatively large amplitudes and. at first sight. resemble the so-called
giant monopole resonance (Gaunaurd cl al.. 1979) of air-bubbles in water. Since most of
the past attention has been directed to the overall broadband spectral behavior. particularly
at high frequencies. this large resonance has not yet received much study. Furthermore. in
many earlier calculations pertaining to the cross-sections of elastic shells in water. the shells
have been assumed evacuated. This assumption does not introduce significant errors in the
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Table I. Material properties of interest

Material p (kg m -}) cAe) (m s·_') e, (m S-I)

Steel 7800 5880 3140
Water 1000 1500

Air 1.20 340
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overall behavior. but as we will see below. it results in the neglect of certain narrow
resonance families that are precisely due to the presence of internal air.

We will study all the resonance features in the above mentioned frequency band. and
will exhibit the real multipole nature of the large features. as well as confirm the presence
of the narrow resonance families caused by inner air. Moreover. we will see that as the shell
thickness is decreased the large reson'lOces approach the monopole resonance ofair-bubbles
in water. This means that: (i) the multipole character progressively disappears. (ii) the
amplitude becomes "giant". and (iii) the single mode that eventually is seen to cause it
(Le. the mode n = 0) produces a single resonance frequency that shifts to lower values.
Furthermore. the narrow rcsonance families due to the inner air remain present and visible
throughout the entire limiting process h -+ a. as shown below.

We note that in the very thin-shell limit. h -+ a. the shell material actually disappears.
Medium No.2 is absent. amI only media No. I and No.3 retmlin. The cocllicients in eqn
(2) then reduce. after considerable algebra. to:

(3)

wherej,,(') and 1t~1)(.) denote the spherical Ressel function of the first kind of order" .lOd
the spherical Ilankel function of the first kind of order 1/, respectively. and a prime denotes
derivation with respl.'Ct to the ,trgument. EQuation (3) is the exact expression of the coellic­
icnts for an 'lir-bubble in water. d. Gaunaurd ct al. (1979). See also the rt'Ccnt review by
Brill and Gaunaurd (19S7). where this and various other limiting cases have been investi­
gated. The right side of eqn (3) can be expressed exclusively in terms of x. since
Xl = (ellcl)' x and CI. Cl arc presumably known. as well as PI' Pl' In the air-bubble case
just mentioned. as weIl as in the limiting process for the progressively thinner metal
shell of interest here. the RST (Resonance Scattering Theory) "background" (Brill and
Gaunaurd. 1987) that must be suppressed to isolate the resulting resonances is the sojl one,
obtained from cqn (3) in the limit of a very tenuous (i.e. ultimately, evacuated) bubble of
density pdpi -+ +0. In this limit, the pertinent coefficients A,,(x) to be used in eqn (I)
reduce to:

(4)

4. NUMERICAL RESULTS AND DISCUSSION

The air-filled, steel sheIl in water and the acoustic media considered here have material
properties of primary interest for wave propagation listed in Table I. The wave speeds for
steel have been computed using the v'llues £ = 200 GPa and v=: 0.3 of Young's modulus
and Poisson's ratio. respectively. The pertinent form-functions for this shell. of relative
thicknesses: "Ia == I-hla = 2.5%. 1.0%,0.1% and 0.01% are shown in Fig. I, in the
dimensionless frequency band: 0 ::;:; x == klCl ::;:; 4. In the upper plots we see that there are
some large-amplitude resonance features occurring at frequencies between one and two­
and-a-half. These amplitude peaks get to be as large as nine-and-a-half. In the lower plots.
where the shell thicknesses arc lWy small. we note that the multipolc resonances have been
replaced by a single one. which shifts down to smaller values of the frequency when the
shell thickness is decreased. We also observe that the amplitude of the monopole resonance
increases with decreasing shell thickness.



Fig. I. Modulus of the form-function of an air-lilled sleel shell in waler in lhe frequency range
o ,;; k ,II ~ 4. Relative shell thickness h/II = 2.5%. 1.0%. 0.1 '~,;, and 0.01 %.

In each plot in Fig. I there is also a low-amplitude narrow set of resonances that trails
behind. and is superimposed on the "son" background obtained by the codlicients in eqn
(4). These narrow resonances arc due to the inner air.

Next we examine the partial-waves IJ:(1[,x)1 contained within the form-function (cf.
eqn (I ». The lirst six of these normal modes (i.e. 1/ = O. 1. ...• 5) arc plotted in Figs 2 and
3. Observation of Fig. 2 shows that each of the partial waves 1/ = 2•.... 5 contains a
dominating resommce spike coincident with each of the main peaks present in the respective
upper plot of Fig. I. Thus. each of the resonance features in the form-function has its origin
in each of the partial waves representing the modes. beginning with 1/ = 2. It is not necessary
to display partial-waves in Fig. 2 past 1/ = 5 because the contribution to the presence of the
resulting large feature for this material and thicknesses diminishes rapidly for larger values
of 1/.

In Fig. 3 the corresponding plots of partial waves for the shells with relative thickness
of only 0.1 % and 0.0 I%. We sec that the multipole resonances of Fig. 2 have disappeared
while. instead. a monopole resonance (n == 0) emerges. In the limit of vanishing shell
thickness this monopole resonance approaches the giant resonance of an air-bubble that
is displayed in Fig. 4. We have veri lied the limiting response numerically for a relative
shell thickness as low as 10- H. For lhe air-bubble in water the form-function is computed
using the coefficients in eqn (3). It shows a main peak at x == k,a:::::: 0.0136 of magnitude
1/0(1[, x)1 :::::: 147. This peak can be decomposed into a background portion and a residual
or resonance portion in the usual manner of the RST as was shown by Gaunaurd et al.
(1979), using a slightly different definition of form-function that accounts for the difference
by a factor of two as compared with the value given here. The background is due to the
bubble wall and shape, and the "resonance" is due to the internal air. Below the value
:c:::::: 0.01 the curve exhibits a growth proportional to x" as predicted by the Rayleigh
fourth-power law for scattering cross-sections, which are proportional to the square of the
appropriate form-function. We note that the amplitude value 147 is about 22 dB above a
background level of unity. Our exact bubble results agree well with approximate ones.
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Fig. 2. The first few (n = O. I•...• 5) partial waves contained within the backscattering cross-sections
summed in the upper plots in Fig. 1. Relative shell thickness is 2.5% (1.0a/a) in the lert (right) plots.

found in the early forties, which appeared in World War II Reports such as the much cited
compendium edited by Major (1969).

5. PHYSICAL INTERPRETATION OF THE LARGE AMPLITUDE FEATURES

The large amplitude resonance features of shell cross-sections at low frequencies seem
to be caused by a relatively slow shell wave that has a phase velocity lower than that of the
ao-wave (i.e. zeroth-order antisymmetric Lamb wave). We will denote this wave the
"a~-wave". It is closely related to the ao·wave, since it emerges from an additional set of
roots of the same characteristic equation. We call it a "shell wave", as opposed to a plate
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Fig. 3. Th.: lirst few (n = O. t. .... 5) partial wav.:scontained within the backSl:alleringcross-sections
summed in the lower plots in Fig. I. Rdativc shell thickn.:ss is 0.1 % (0.01 %) in the left (right)

plots.

wave. bccause it can only be studied by a shell approach. whether exact (i.e. based on the
three-dimensional theory of elasticity) or approximate (i.e. based on a shell theory). The
6 x 6 denominator determinant D.(x) in eqn (2) has zeros that arc the (complex) eigen­
frequencies of this fluid-loaded sound-excited shcll.lf the shell density P2 is much larger
than the water density PI (i.e. P2 » PI), and also much larger than the density of the filler
fluid P J (i.e. 112 » PJ). then the condition D.(x) = 0 reduces to the vanishing of four possible
4 x 4 minor dcterminants D 1~, D ~~, D~~ and D ~~. The boundary conditions on r = a, h that
give rise to these determinants all imply that at least one shell surface is prevented from
moving in the radial direction, except the vanishing of D ~~. For this exception both shell
surfaces are free from surface traction. and this is the condition required for the formation
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of' proper Lamb waves. Therefore. the pertinent resonances of this shell in this frequem:y
band appear as the roots of a generalized eigenfrequency condition for Lamb modes in
submerged sltells. obtained by Gaunaurd and Waby (19X7). Ordin'lry lamb modes were
originally studied for plates in 1'{/('lIllm. and we are now dealing with shells l1uid-loaded on
both surfaces wilh dissimilar l1uids, The expanded version of that modified condition is

el I1 ell) el I4 ell S

D;:. = d 11 ellJ elj4 dIS = O. (5)
d41 d43 "44 d4S

dl>2 "1>3 "t.4 dl>S

which only has real roots X.I. where tl and I are the two indices required to label any root.
The t~lmilies of roots of this equation are the shellatlalogues of the resonances usually

associated with the symmetric (,\'n) and antisymmetric (a.) Lamb modes in plates. origin'llly
studied by Tolstoy and Usdin (1953. 1957), However. there are also additional roots of eqn
(5). These extm roots -as well as the other ones-can be used to construct the dispersion
plots for the phase velocities cf of the circumferential waves travelling around the shell by
means of the relation (Gaunaurd. 1989; Gaunaurd et al., 1983):

"f(x)......... ~ = -~-'~---

c, n+ 1/2'
(6)

where x., denotes the roots of eqn (5) corresponding to the /th surface wave.
Dispersion plots for the phase velocities, c~, belonging to the ao-branch in the frequency

band: 0 ~ x ~ 20 are displayed in Fig. 5 for a steel shell of various thicknesses (viz.
It/a = 1%,2.5%. 5%.... ). The phase velocities associated with the so-waves are all greater
than 5 km s - I. and thus. they fall outside the upper bounds of Fig. 5. However, in the
band: I ~ x ~ 2.3. for a steel shell of relative thickness h/a = I%, there appears anotlter
branch of the dispersion curves also shown in the lower left corner of Fig. 5 for anotlter
permissible set of roots of eqn (5). It may be proper to call this branch the (Junger)
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Fig. 5. Disl'ersinn pint III' the I'h;\sl: vetllciti..:s of til..: 1.":n1th onkr (u,,) antisYllllm:tric l.al11h wave
versus k ,II fllr all air·lilkl1 sph..:m;al sled shell ill w,iter wilh relative shell thickness h/II = I 'v." 2.5'~o.

5%. 10% and ~Il%. For 111\: rcblivc shcH thidncss of I% the a:,·hralldl is displayed.

"a~-branl:h". IL sccms to exist only within a (narrow) low-rrcl{uency h'lnd. when: curvatun:
clrccts arc marketl, Wc notc that in contrast to ordinary dispersion plots for the lIll-branch.
as obtained fromJlal plllli' approachcs (Tolstoy and Usdin. 19SJ. 1957; Ayn:s el al.. 19H7).
thc tlo-branch(cs) shown in Fig. 5. obtained from the exact three-dimension." theory of
elasticity contained in cl/ns (5) and (6) for fluid-loaded shells. exhibit values that grow-­
instead of dct:n:ase to zcro --as.\' dccre.lses. We furthcr notc that for subsonic phase
vdot:ities (viz. c:; < ('I. this corrc-sponds to fn:quencies bdow the "coincidence" fn:quency).
the uu-branch is "turncd-oW' and thus. the corresponding curve is plotted in dashed lines
in that region of Fig. 5. (n that (subsonic) low-frequency region where the Ull Lamb wave
is still dormant. the so·wavc (responsible for the so-branch of the phase velocity-not shown
in Fig. 5) is "on" exerting its int1uencc on the form-function, and so is the a~-wave.

As stated before. the utI-wave only exerts its influence in the band: I ~ x ~ 2.3 (for
ilia = I %). and that is precisely the band where the large resonance features of the form­
function an: seen to Ol:l:lIr in Figs I and 2. Finally. for an air-bubble in water there is no
shell and no at.-waVl:. but tht.: dispt.:rsion l:urVl: that "corresponds" to the all-branch was
studied e~lrlier by Gaunaurd t'l al. (19g3). (n the high-frequcncy limit -- whil:h for a bubbk
is rcached ,llmost imrnc-diatcly. ror x :::: 1-- tht.: phase velocities of the interface waves
upprouch the value of the speed of sound in air (Tablc I. Fig. 5 and Fig. I in Junger. 1967).

6. CONCLUS10:-"-S

We have studied. computed and displayed the large resonance features that arc present
at low frequcncies in the form-functions of air-fillcd. spherical elastic shells in water. From
the plots and the discussion it is obvious that these large features have a fnullipolc character
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and. for the thicknesses and materials shown, are caused by the superposition of the
fundamental peaks of about half-a-dozen modes. As the shell thickness is made smaller
(down to extremely and impractically small values) we note that: (i) fewer modes contribute
to their formation; (ii) ultimately. as b - a, only one mode (viz. the monopole mode. n = 0)
contributes to it. just as in the air-bubble case; (iii) in that case the monopole resonance
grows in amplitude from large to giant. and its spectral position shifts to lower values as
low as x =::: 0.0136: (iv) the narrow. low-amplitude. overtones due to the presence of the air
inside the shell remain present in the form-function and in the partial waves throughout
the entire limiting process. Finally we have given a physical interpretation for the cause of
this large resonance feature. It seems to be due to the additional zeros of eqn (5) that by
means of eqn (6) produce an additional branch of the dispersion curves for the submerged
shell. This branch is associated with a slow wave circumnavigating the shell at low frequen­
cies. This branch seems to be analogous to a branch found earlier by Junger (1967) using a
shell theory by Donnell ( 1933) to describe the shell motions. [For details of this theory. see
for example Junger and Feit (1986).] We denoted this branch by al"~ For a spherical steel
shell of relative thickness h./a = I '~o this branch exists only for low frequencies (viz. for
I ~ x ~ 2.3). This is where the large and very noticeable resonance features of submerged
shells actually appear. The slow wave with these values of its phase velocity is due to the
shell curvature. and would have never emerged from a flat platc model of Lamb waves.
whether in vacuum or tluid-ILKtded. as they have been studied before.

.·...k","'1..d,/..",.·lIIS ·--The authors gratl'l'ully acknowledge the support of the Independent Research Boards of
their respl·l.·tive Institutions.
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APPENDIX

Five orthe:!X non-vanishing clements. d". listed in Ayres ('I 01. (19K7). Appendix. contain minor typographical
errors lh;1\ we wish to correct here to set the record strilighl. The underlined letler in eilch clement is the typo:

tI" = -4k"="y:(k,,,") + [:!n(n+ I) -k:=~'Jy.(kJ=h).

tlu = 211(11+ IJ[k.'''j:(k.,~)-j.(k.=b)l.
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<1,. ~ ~"hj;(k,:h) ~ (k~:~: - ~n(n - I) - ~1i.(k-:hI.

<1,. ~ ~k.,hy;lk"hI + (k~,h: - 2n(n - I) ~ ~Ir.lk:h) .

.1'.(') being the spherical Bessel functilln of thc s~'l:ond kind of ordcr n.
Furthermore. Fig. 2a in A~res <'r <11. (19~7) refers to the large resonance featun: in the cross-sectilln dlspla~cd

there. as the oomllnopllle resonancc". (n view of the arguments discussed here. we now rcalize the nllllrip"l..
character of this feature.


